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Using the firstN5668 measured eigenfrequencies of a two-dimensional~2D! microwave cavity, we test
experimentally the properties of a quantityW(x) proposed by Aurich, Bolte, and Steiner@Phys. Rev. Lett.73,
1356 ~1994!# as a statistical measure for quantum chaos in spectra. Our data confirm that the distribution of
W(x) for the spectrum of the classically irregular cavity has a statistically significant Gaussian form. We also
calculate spectra of classically regular 2D cavities~rectangular and square! up to comparable values ofN and
calculate theirW(x) distributions. Finding that their distributions, too, are close to Gaussian form, we conclude
that one should not expect to be able to use the distribution ofW(x) as an effective experimental tool for
deciding whether a givenfinite quantum spectrumcorresponds to a classically irregular~chaotic! or regular
~integrable! system.@S1063-651X~96!51607-7#

PACS number~s!: 05.45.1b, 03.65.Ge

Investigation of quantum systems whose classical coun-
terparts are chaotic is the subject of quantum chaos, a dy-
namically growing field@1,2#. So far, because theoretical
work in quantum chaos has greatly exceeded experimental
work, many theoretical predictions lack empirical confirma-
tion. The experimental work we report in this Rapid Com-
munication on the distribution of the quantityW(x) proposed
in @3# as a statistical measure for chaos in spectra is directed
toward closing this gap.

In contrast to a bounded classical Hamiltonian system
~compact phase space! that is chaotic, i.e., its evolution is
exponentially sensitive to the initial conditions, the corre-
sponding bounded quantum system has a discrete eigenen-
ergy spectrum and evolves quasiperiodically. Nevertheless,
there has been a vigorous search for signatures of chaos in
quantum systems. The fingerprints of classical chaos were
discovered in the distribution of eigenenergies of the corre-
sponding quantum system. It was found that the eigenenergy
distribution for even a low-dimensional (>2) classically
chaotic system can be described by random matrix theory
~RMT! @4#. Studies in RMT have emphasized the Gaussian
orthogonal~GOE!, Gaussian unitary~GUE!, and Gaussian
symplectic~GSE! ensembles. The GOE and GSE@GUE# per-
tain~s! to physics that is@is not# invariant under time rever-
sal. All three are characterized by level repulsion: at small
spacings linear for GOE, quadratic for GUE, and degree four
for GSE.

Predictions of RMT have been confirmed in two-
dimensional~2D! quantum billiards@1,5,6#. Of great experi-
mental importance for bounded systems is that the 2D Schro¨-
dinger equation is equivalent to the 2D Helmholtz equation
for electromagnetic waves, (¹21k2)C50, where k is a
wave vector. This allows analogs of 2D bounded quantum
systems to be studied experimentally with 2D microwave
@7–9# or acoustic@10# cavities. In particular, GOE and GUE
statistics, respectively, have been confirmed for microwave
cavities that are@7–9# ~are not@11,12#! time-reversal invari-
ant. GOE statistics were also found for 3D irregularly shaped
microwave cavities@13#, even though the physics of the 3D

Schrödinger ~scalar wave! equation and its boundary condi-
tions are not mathematically equivalent to those for the 3D
Helmholtz equation for~vector! electromagnetic waves. GSE
statistics have been found for numerically computed eigen-
values of the lattice Dirac operator in quantum chromody-
namics@14#.

Quantum spectra of classically integrable systems are be-
lieved to have the statistics of Poissonian random proceses;
these reflect a tendency toward level clustering, although a
careful statistical analysis showed important deviations from
the ‘‘pure’’ Poisson case@15#.

In addition to the results described above, there are clas-
sically chaotic systems having quantal counterparts whose
spectral statistics are not those of RMT. One well known
example is geodesic flows on hyperbolic surfaces, which ex-
hibit so-called arithmetical chaos@16,17#. This example does
not have the quantal spectral statistics of the~nonarithmeti-
cal! strongly chaotic systems described above; rather, it has
near-Poisson quantal spectral statistics, such as is ‘‘ex-
pected’’ for classically regular systems. Therefore, there is a
clear need for new, quantitative statistical measure~s! of
quantum chaos in spectra. Such measure~s! should discrimi-
nate neatly between regular and irregular spectra that, we
emphasize, will befinite in all practical cases, i.e., obtained
experimentally or numerically.

A recent paper@3# presented a quantity to ‘‘measure
quantum chaos in spectra,’’ viz.,W(x)5Nf l(x)/AD`(x);
Nf l(x) is the fluctuating part of the spectral staircase func-
tion N(x)5N̄(x)1Nf l(x), N̄(x) is the smooth Weyl term
describing the ‘‘mean behavior’’ and D`(x)
5 limL→`D3(L,x), whereD3(L,x) is the spectral rigidity.
For the case considered in this paper,x5AE, whereE is the
energy above the ground state.

The results of Ref.@3# for the asympototic (x→`) distri-
bution ofW(x) may be summarized as follows:~i! for scal-
ing, strongly chaotic, bound classical systems, including
those exhibiting arithmetical chaos, the distribution should
be a Gaussian;~ii ! for classically integrable systems, it
should be non-Gaussian.
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An obvious disadvantage of using this spectral measure is
that one is supposed to constructW(x) asymptotically for
x→` and then study its distribution for bothx and L
→`. Because any experimental or numerical spectrum is,
perforce, finite, the practical utility ofW(x) will hinge on its
nonasymptoticbehavior.

Using finite spectraobtained numerically, the authors of
Ref. @3# presented supporting evidence for their conjectures
for W(x), see above, for three different chaotic systems:~a!
geodesic flow on a nonarithmethic compact hyperbolic sur-
face of genus two, using the 4500th to 6000th eigenvalues;
~b! a billiard on the hyperbolic plane that shows arithmetical
chaos, using the first 1040 eigenvalues;~c! a truncated hy-
perbola billiard on the Euclidean plane, using the first 1850
eigenvalues. In all three cases the Gaussian form of the dis-
tributionsW(x) was found to be statistically significant even
though the results were obtained with finitex values, i.e.,
were nonasymptotic.

In experiments simulating 2D quantum billiards with 2D
microwave cavities used at room temperature, one typically
obtains well-resolved spectra up to 600–700 eigenfrequen-
cies above the ground state.@Because the leading term in
N̄(n)}n2 and because each level has a finite frequency
width Dn;n/Q given by the cavity quality factorQ, there
must exist an* above which one can no longer cleanly re-
solve levels.#

To our knowledge, this Rapid Communication reports the
first experimental test of the usefulness of the quantity
W(x) as a statistical measure for quantum chaos in a classi-
cally chaotic system. Our experiment used a microwave cav-
ity ~inset in Fig. 1! that was built to simulate a classically
chaotic quantum billiard. The cavity had an area of
0.0886(2) m2 and a perimeter of 1.256(2) m. Its height
d56.4 mm was chosen to ensure two-dimensionality up to
nmax5c/2d.23.4 GHz. Constructed of polished brass, the
cavity had a quality factorQ.23103. The cavity had four
sidewalls, two convex with average radius around 1 m and
two straight but nonparallel; this geometry ensured that its
classical periodic orbits were unstable~hard chaos! and iso-
lated.

Microwave power was coupled into and out of the cavity
via coaxial cables terminated by small loops that were in-
serted into the cavity through small holes~3.6 mm diameter!
located on one of the side walls at the cavity midplane. Both
the size and the insertion depth of each loop were fixed em-
pirically as a compromise between coupling strong enough
to excite/detect even weak resonances and coupling weak
enough to avoid strong perturbation of the cavity.

Over the frequency range 0.5–18 GHz we recorded trans-
mission spectra for the cavity@19# and stored them in a com-
puter. We ensured that we did not miss weakly excited
and/or detected resonances by recording spectra for several
different positions of the coupling antennas@13#. We were
able to resolve cleanly 668 eigenfrequencies from the ground
state at 0.762 GHz up to a maximum of 14.998 GHz. Figure
1 shows the 8–10 GHz portion of the spectrum, with the
logarithmic vertical scale bringing out weaker resonances
having amplitudes 2–3 orders of magnitude below the stron-
gest one.

We analyzed the transmision spectra in two different
ways: ~1! After unfolding the spectrum@13#, we calculated
the nearest-neighbor-spacing distribution@1,20# and spectral
rigidity D3(L) @1# and compared them with GOE predic-
tions. For this type of analysis, the formula
En5kn

25(2p/c)2nn
2 relates energiesEn to measured reso-

nance frequenciesnn . ~2! We calculated the distribution of
the functionW(x) introduced in@3#. Herexn5kn .

Figure 2 and its inset show, respectively, the nearest-
neighbor-spacing distribution and spectral rigidityD3(L) for
our 2D cavity. For the former we performed a least-squares
fit to the empirical Brody distribution @21#,
Pb(s)5asbexp(2bsb11), wheres is a level spacing normal-
ized to the local average level spacing,b is a ~level repul-
sion! parameter, and a5(b11)b, b5$G@(b12)/(b
11)#%b11, G being the gamma function. The fit yields
b51.0560.09; see the dot-dash line in Fig. 2. Because
b50 @b51# corresponds to the Poisson@GOE# level statis-
tics, our results, as expected, agree with the GOE case~solid
line in Fig. 2!.

FIG. 1. A portion of the measured frequency spectrum for a 2D
microwave cavity~shape shown in the inset! that simulates a clas-
sically chaotic 2D quantum billiard. Note: the tops of two resonance
peaks were ‘‘clipped’’ to make room for the inset.

FIG. 2. The nearest-neighbor level-spacing distribution for the
cavity shown in Fig. 1~inset!. The full line shows the GOE predic-
tion; the dot-dashed line shows a Brody distribution~see the text!
fitted to the experimental distribution, givingb51.05(9). Theinset
shows the experimental spectral rigidityD3(L) compared to GOE
~full line! and Poisson~dashed line! predictions.
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The inset of Fig. 2 compares the spectral rigidityD3(L)
for our cavity data with the theoretical prediction for GOE
~full line! and Poisson~dashed line! statistics. The small de-
parture of the data from the GOE prediction confirms that
our experimental system is classically strongly chaotic.

Figure 3 shows the distributionW(w) of the quantity
W(x) @3#.

Because of the finite width of each resonance and, at
higher frequencies, the requirement that one maintain two-
dimensionality, it is an inescapable experimental fact that
one must deal with finitex values; one cannot pass experi-
mentally to the asymptotic regime ofx andL →`. ~This is
also the case for numerically computed spectra; cf.@3#.!
Therefore, we approximatedD`(x) by determining
D3(L,x) for several experimentally accessibleL values.
Figure 3~a! @Fig. 3~b!# showsW(w) obtained forL5100
@L5200#. Fitting a Gaussian function G(w)
5AA/pexp(2Aw2)1B, whereA and B are fitting param-
eters, to W (w) gave A50.369(5) @0.388(7)#, and
B50.0000(6)@0.0000(8)# for L5100 @L5200#. The mean
varianceV̄5( i51

i5n@W(wi)2G(wi)#
2/n, whereW(wi) is the

value ofW in the i th bin, andn is the total number of bins

whereW(wi) is nonzero, measures the departure of the ex-
perimentalW(w) from the fittedG(w). We foundV̄ to be
0.9731024 @2.0331024# for the results presented in Fig.
3~a! @Fig. 3~b!#.

Qualitatively, visual inspection of Figs. 3~a! and 3~b!
and quantitatively, the small values ofV̄ show that our
W(w) data are approximated well by Gaussian functions.
However, note that the variance ofW(w),
var@W#5*2`

1`dww2W(w), which is 1.28 for Fig. 3~a! and
1.21 for Fig. 3~b!, has not yet reached the asymptotic value
of 1 predicted by theory@3#. We also used the spectral en-
tropy E@W#52*2`

1`dwW(w)lnW(w) as a quantitative mea-
sure for spectral randomness@3#. Using our data, we ob-
tained 1.54 forL5100 and 1.50 forL5200.

Given the strictly limited number of energy levels avail-
able experimentally, a crucial question is whether the method
presented in@3# for measuring chaos in spectra can distin-
guish clearly between classically integrable and classically
chaotic quantum systems. To check this, we calculated
W(w) for two integrable systems: a rectangular cavity~RC!
and a square cavity~SC! that simulated rectangular and
square billiards, respectively. We chose the areas of RC,
25335 cm2, and of SC, 29.77329.77 cm2, to be close to
the area 886~2! cm2 of our experimental chaotic cavity~CC!.
Over the frequency range 0–15 GHz, CC~RC! @SC# has 668
~657! @667# eigenfrequencies, which guarantees that one will
be comparing statistics computed for nearly equal numbers
of levels.

Figure 4 showsW(w) for RC. Fitting a Gaussian curve
G(w) gives A50.470(6) andB50.0000(7). Note that
we calculatedW(w) for RC for the same range ofx and
L used for our experimental CC data in Fig. 3~b!, in particu-
lar, for L5200. Calculations for RC give a mean vari-
ance V̄51.4531024, var@W#51.06, and E@W#51.44.

FIG. 3. Experimentally obtained distributions ofW(x)
@5W(w)# for the lowest 668 levels of the cavity shown in Fig. 1
~inset! compared with fitted Gaussian distributions: panel~a!,
W(w) obtained for L5100; panel ~b!, W(w) obtained for
L5200.

FIG. 4. Theoretically calculated distribution ofW(x)
@5W(w)# for the lowest 657 levels of a rectangular billiard~see
the text! compared with a fitted Gaussian. The calculations were
done forL5200.
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Qualitatively, visual inspection of Fig. 4 shows thatG(w)
reasonably approximates the ‘‘regular’’ RC data. Quantita-
tively, the small value ofV̄ confirms this. We obtained simi-
lar results~not shown here! for SC.

We remark that the widths of the experimentalW(w)
distributions shown in Figs. 3~a! and 3~b! for CC are some-
what larger than that in Fig. 4 for the integrable RC. Simi-
larly, the spectral entropy for CC is several percent larger
than that for RC.

We conclude that if one is given a finite spectrum for an
unknown system, it will be very difficult to use only the
similarity, or lack thereof, of itsW(w) to a Gaussian distri-
bution to decide whether the underlying classical dynamics
is integrable or nonintegrable.

We believe that this somewhat surprising result, obtained
for classically integrable systems where one would expect to
get a much narrower distribution, is connected with the prop-
erties ofW(x). Compared to the classically chaotic case
~level repulsion!, level-spacing fluctuations are bigger for
classically integrable systems~level clustering!; additionally,
the spectral rigidityD3(L) for the regular case is found to
saturate at largeL at the value~much! below L/15 @15,18#.
For example, for the firstN levels of RC one can use the
results of Ref.@15# ~its Eq. 3 withecr50.5) to estimate that
D3sat.0.06AN; for N5657, this yields the estimate

D3sat.1.5. Our result obtained by averaging ofD3(L,x)
overx for L5200 for the RC spectrum used for Fig. 4 is the
same, viz., 1.51.

In summary, for a classically chaotic 2D quantum billiard
simulated by a 2D microwave cavity, we have evaluated dis-
tributions of a functionW(x) introduced as a spectral mea-
sure for chaos in spectra. We found that the distribution of
W(x) is approximated well by a Gaussian distribution. How-
ever, theoretically calculated distributions ofW(x) for clas-
sically integrable quantum systems, such as those simulated
by rectangular and square cavities, are also close to Gauss-
ian. Given the inevitable, practical restriction of having only
a finite number of levels in our experimental spectrum, we
found that the shape of the distribution ofW(x) is not sen-
sitive enough to be used as a practical diagnostic tool for
distinguishing between classically chaotic and classically in-
tegrable quantum systems only on the basis of the first
N.650 levels. Whether this will continue to be the case for
much larger values ofN can only be addressed when one is
able to obtain~experimentally or numerically! well-resolved
spectra with many more levels.
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